

Reaktionen der Borhydride B_3H_7 und B_5H_9 mit den ungesättigten Bor-Stickstoff-Verbindungen NBtBu₂ und NB₂tBu₃

Stefan Küpper^a, Peter Paetzold*^a und Roland Boese^b

Institut für Anorganische Chemie der Technischen Hochschule Aachen^a, Templergraben 55, D-5100 Aachen

Institut für Anorganische Chemie der Universität-Gesamthochschule Essen^b, Universitätsstraße 5-7, D-4300 Essen

Eingegangen am 14. April 1993

Key Words: Iminoboranes / Azadiboriridines / Diaza-arachno-octaborane / arachno-Nonaborate(1-)

Reactions of the Boron Hydrides B₃H₇ and B₅H₉ with the Unsaturated Boron-Nitrogen Compounds NBtBu₂ and NB₂tBu₃

THF \cdot B₃H₇ reacts with RB = NR (1, R = *t*Bu) to yield the µamino-diborane(6) B₂H₄R(NHR) (5), which crystallizes in the triclinic space group $P\bar{1}$. The reaction of B₃H₇ with the azadiboriridine NB₂tBu₃ (2, R = *t*Bu) leads to the known NB₂R₃ \cdot BH₃ (4) and the novel (NB₂R₃)₂B₂H₄ (6). Product 6 is considered to represent a diaza-*arachno*-octaborane derivative. The

Über den ungesättigten Charakter der Alkyl(alkylimino)borane $RB \equiv NR$, allen voran des bei Kühlung lagerfähigen, kristallstrukturanalytisch charakterisierten tert-Butyl-Derivats (1, R = tBu), haben wir zusammenfassend berichtet^[1]. Auch die Bor-Stickstoffverbindung Tri-tert-butylazadiboriridin NB_2R_3 (2, R = tBu) erwies sich trotz der sterischen Abschirmung der drei Ringatome als unerwartet reaktionsfreudig^[2]. Mit dem Boran BH₃ setzen sich sowohl 1 als auch 2 zu Bor-Stickstoff-Verbindungen um, die man als kleinere Vertreter der Azaboran-Cluster-Familie ansehen kann, nämlich zu Derivaten von arachno-Diazapentaboran(7), $N_2B_3H_7$, [3, Gl. (1)]^[3] bzw. von *nido*-Azatetraboran(6), $NB_{3}H_{6}$ [4, Gl. (2)]^[4]. Wir versprachen uns daher von der Umsetzung der Verbindungen 1 und 2 mit den Boranen THF \cdot B₃H₇ und B₅H₉ einen Vorstoß zu mittelgroßen Vertretern der Azaboran-Familie.

iminoborane 1 reacts with B_5H_9 in the presence of lutidine (L) to give the ionic product $[L-BR=NHR][B_9H_{14}]$ (7); our earlier report on the formation of the aza-arachno-heptaborate $[LH][NB_6H_8R_2]$ has to be revised. The products from the reaction of B_5H_9 with NB_2R_3 are 4 and 6.

Reaktion von B_3H_7 mit $tBuB \equiv NtBu$

Das Iminoboran 1 und THF \cdot B₃H₇ ergeben in THF bei Raumtemperatur eine Mischung von Produkten, unter denen sich – den ¹¹B-NMR-Signalen zufolge – u.a. auch die bekannten Borane N₂B₃H₅R₂ (3) und N₂B₃H₄R₃^[3] befinden. Durch fraktionierte Destillation kann man das farblose flüssige μ -Aminodiboran 5 mit 20% Ausbeute aus der Produktmischung isolieren [Gl. (3)]. Dasselbe Produkt 5 läßt sich auch auf unabhängigem Wege aus dem Boran RBCl₂ durch Amidierung mit RNH₂ und nachfolgende Umsetzung mit LiBH₄ nach Gl. (4a) und (4b) mit insgesamt 44% Ausbeute darstellen.

Das eine B-Atom (BRH₁) in 5 ergibt im ¹¹B-NMR-Spektrum ein Dublett (J = 125 Hz) bei $\delta = -12.9$, das andere (BH_{t2}) ein Quartett (J = 97 Hz) bei $\delta = 26.9$. Die Quartett-Struktur deutet auf einen bei Raumtemperatur raschen Austausch des brückenständigen Atoms H_b mit den beiden terminalen Atomen Ht von BHt2 hin, der wohl über ein offenkettiges Molekül HRB-NHR-BH3 als Zwischenstufe verläuft; solche Austauschreaktionen wurden auch für das µ-Amino-diboran μ -(Me₂N)B₂H₅ beschrieben^[5]. Daß dagegen die offenkettige Form als Hauptprodukt jene Quartett-Struktur veranlaßt, wie es für das Methyl-µ-amino-diboran µ-(Me₂N)B₂H₄Me gefordert wird^[6], können wir für 5 ausschließen, da bei -40°C die Quartett-Struktur in das Dublett $[J(BH_b) = 44 \text{ Hz}]$ eines Tripletts $[J(BH_{t2}) = 120 \text{ Hz}]$ übergeht, ohne daß sich dabei die chemische Verschiebung ändert. Die µ-Amino-diboran(6)-Struktur liegt also bei Raumtemperatur ebenso wie bei -40°C vor, aber der H-Atom-Austausch friert beim Abkühlen ein.

Die Röntgenstrukturanalyse von 5 bei 117 K (Abb. 1) zeigt, daß die Moleküle im Kristall ähnlich aufgebaut sind wie die Amino-diborane μ -(H₂N)B₂H₅ (5')^[7] und μ -

 $(Me_2N)B_2H_5(5'')^{[8]}$, deren Struktur u. a. mikrowellenspektrometrisch in der Gasphase ermittelt wurde, und wie das μ -(Benzylidenamino)diboran(6) μ -(PhCH=N)B₂H(C₈H₁₄)₂ (C₈H₁₄ = Cycloocta-1,5-diyl) (5'''), für das eine Kristallstrukturanalyse vorliegt^[9]. So findet sich der B-B-Abstand von 5, 5', 5'' und 5''' bei 192, 192, 192 bzw. 199 pm, der B-N-Abstand bei 155, 156, 154 bzw. 154 pm, der Winkel B-N-B bei 76.5, 75.9, 76.8 bzw. 80.8° und der Winkel B-H_b-B bei 96.8, 90.0, 89.1 bzw. 101°. Erwartungsgemäß liegen die *t*Bu-Gruppen *anti*-ständig bezüglich der Ebene durch die B-Atome, das N- und das H_b-Atom. In Übereinstimmung mit seiner Zentrosymmetrie liegt im Kristall ein Racemat beider Enantiomerer 5 vor.

Abb. 1. Struktur von 5 (Ellipsoide mit 50% der Aufenthaltswahrscheinlichkeit der Elektronen). Ausgewählte Abstände [pm] und Winkel [°]: B1-N1 154.7(4), B2-N1 154.8(5), N1-C1 151.0(4), B1-C5 160.0(4), B1-H1 104.6(38), B1-H2 125.0(46), B2-H2 131.2(35), B2-H2a 112.2(45), B2-H2b 101.4(39), N1-H1a 89.0(47); B1-N1-B2 76.5(2), B1-N1-C1 124.3(3), B2-N1-C1 123.6(2), N1-B1-C5 119.1(3), B1-H2-B2 96.8(28), C5-B1-H1 112.3(14), H2a-B2-H2b 120.3(30), C1-N1-H1a 106.4(26)

Während also die Reaktion von 1 mit THF $\cdot B_3H_7$ nicht zu den erwarteten Azaboran-Clustern, sondern zu einem Abbau des B_3H_7 -Gerüsts führt, bleibt dieses Gerüst intakt, wenn man THF $\cdot B_3H_7$ auf ein Aminoiminoboran einwirken läßt. Nöth et al. fanden im Falle des Iminoborans $C_9H_{18}N = B = NtBu$ ($C_9H_{18}N = 2,2,6,6$ -Tetramethylpiperidino), daß B_3H_7 die kurze BN-Bindung zu einem Produkt $C_9H_{18}N-BH=N(tBu)-B_3H_6$ so hydroboriert, daß sich das Piperidin-N-Atom an ein zweites B-Atom des B_3H_6 -Rings addiert^[10].

Reaktion von B₃H₇ mit NB₂tBu₃

Gegenüber dem Azadiboriridin 2 verhält sich B₃H₇ in THF in bekannter Weise^[11] so, als dismutiere es in BH₃ und B₂H₄: Boran BH₃ addiert sich an 2 zum Addukt 4^[4], das hypothetische Diboran(4) kann in ganz entsprechender Weise zwei Dreiring-Moleküle 2 anlagern, so daß in dem mit 41% Ausbeute isolierten Produkt 6 zwei Bicyclobutan-Gerüste vom Typ 4 über eine B-B-Bindung untereinander verknüpft sind [Gl. (5)]. Die miteinander verbundenen Molekülteile sind einander bei Raumtemperatur äquivalent, da die ¹H-, ¹¹B- und ¹³C-NMR-Spektren für das Vorliegen nur je eines Fragments NtBu und BH₂ sprechen. Allerdings ist offenbar freie Drehbarkeit um die zentrale B-B-Bindung nicht gegeben, sonst müßten alle vier Fragmente BtBu einander äquivalent sein. Tatsächlich findet man zwei ¹¹B-NMR-Singuletts bei $\delta = 17.1$ und 36.5, wobei letzteres zu einem ähnlich konfigurierten B-Atom gehören muß wie die BtBu-Gruppierung im Vergleichsmolekül 4 ($\delta = 32.9$). Beide Singuletts gehören zu B-Atomen, die an das BH₂-Fragment gebunden sind, wie sich aus dem 2D-11B-COSY-NMR-Spektrum ergibt: daß die beiden BtBu Fragmente hier zu keinem Kreuzpeak führen, heißt nicht, daß sie nicht aneinander gebunden sind, da das verbrückende N-Atom erfahrungsgemäß die Beobachtung solcher Kreuzpeaks nicht zuläßt^[12]. Die stärkere Abschirmung des einen der beiden B-Atome ($\delta = 17.1$) deutet darauf hin, daß es zusätzlich Wechselwirkungen eingeht. Aus all diesen Beobachtungen schließen wir, daß je ein B-Atom einer jeden Molekülhälfte eine zusätzliche Wechselwirkung mit dem B-Atom der BH2-Gruppierung der anderen Molekülhälfte eingeht. Dadurch wird die Rotation um die zentrale B-B-Bindung verhindert, und die beiden BtBu-Fragmente eines Dreiecks werden inäquivalent. Es entsteht ein Diaza-arachno-octaboran(10)-

Chem. Ber. 1993, 126, 1787-1790

A 1789

Gerüst, das sich nach den Wadeschen Clusterregeln von der zugehörigen *closo*-Struktur, dem zweifach tetragonal überdachten tetragonalen Antiprisma (realisiert z.B. im Anion $B_{10}H_{10}^{2-}$) durch Herausnahme zweier Atome ableitet, in unserem Falle der Atome B2 und B7, bei zusätzlicher Spaltung der Bindung zwischen den Atomen 3 und 6, d. s. beim Produkt 6 die N-Atome. Von der ursprünglichen Symmetrie D_{4d} bleibt noch das Element C_2 (senkrecht zur zentralen B-B-Bindung) übrig, das die Äquivalenz beider Molekülhälften gewährleistet. Das mit $N_2B_8H_{10}$ isoelektronische *arachno*-Boran B_8H_{14} leitet sein Gerüst – dem NMR-Spektrum zufolge – vom *closo*-Körper durch Herausnahme von B1 und B2 und Öffnen der Bindung B6-B9 ab^[13].

Zur Cluster-Struktur von 6 paßt auch die unterschiedliche Bindung der zwei H-Atome einer jeden BH2-Gruppe. Sie läßt sich aus den Kopplungskonstanten für das ¹¹B-NMR-Signal bei $\delta = -34.8$ folgern, einem doppelten Dublett mit J = 134 und 51 Hz, das sind Werte, die für ein terminales und ein schwächer gebundenes endo-ständiges H-Atom sprechen. - Daß wir die im Formelbild punktiert eingetragenen Bindungen für schwach halten, hängt mit folgender qualitativer Bindungsvorstellung zusammen. Die Atome des Gerüsts N₂B₆ liefern 32 für Bindungsbildung geeignete Atomorbitale (AOs) und 28 Valenzelektronen. Nach Bildung normaler (2c,2e)-Bindungen mit den 10 Liganden sind noch 22 AOs und 18 Elektronen verfügbar. Bleibt man beim Bild weitgehender Lokalisierung der Bindungen, dann reicht der Vorrat an Elektronen gerade zur Ausbildung von fünf (2c,2e)- und vier (3c,2e)-Bindungen. Es muß sich bei ersteren um vier BN- und eine BB-Bindung, bei letzterem um zwei BNB-π-Bindungen vom Allyl-Typ und um zwei geschlossene BBB-Dreizentrenbindungen handeln, wie es aus dem Strukturbild A hervorgeht. Dieses einfache Bild bietet für jene punktierten Wechselwirkungen keinen Anhaltspunkt.

Die Röntgenstrukturanalyse an einem Einkristall von 6 zeigt, daß es rhombisch, Raumgruppe $Pna2_1$, kristallisiert, doch läßt sich wegen einiger fehlgeordneter C-Atome nur ein *R*-Wert von 0.17 erreichen, so daß die Angabe von Abständen und Winkeln wenig Sinn hat. Immmerhin läßt sich die aus dem überdachten tetragonalen Antiprisma hervorgegangene, um die C_2 -Achse gewundene arachno-Struktur von 6 klar erkennen, und zwar mit besonders langen B-B-Bindungen dort, wo diese Bindungen in der Formel punktiert dargestellt sind.

Reaktionen von B_5H_9 mit $tBuB \equiv NtBu$ und NB_2tBu_2

Zur Reaktion von B_5H_9 mit dem Iminoboran 1 und zwei anderen Iminoboranen hatten wir berichtet^[14], daß sich in Gegenwart von Lutidin die $B \equiv N$ -Gruppierung so an die Basisfläche der tetragonalen B_5 -Pyramide addiere, daß ein trigonales Prisma entstehe, das tetragonal überdacht sei; dabei werde eines der vier brückenständigen H-Atome als Proton von der Base Lutidin (L) übernommen, so daß insgesamt das salzartige Produkt LH[NB₆H₈R₂] mit einem Aza-*arachno*-heptaborat-Anion isoliert werde. Unser Hauptargument waren drei Dubletts und ein Singulett im ¹¹B-NMR-Spektrum im Verhältnis 1:2:2:1. Wir haben diese Reaktion wieder aufgegriffen und das Produkt 7 mit einer verbesserten NMR-Ausrüstung untersucht. Wir fanden die vier ¹¹B-NMR-Signale bei derselben Verschiebung, aber jetzt im Intensitätsverhältnis 3:3:3:1. Die Spektren waren seinerzeit in einer Weise vermessen worden, daß wir bei der Ablesung der Intensitäten Opfer von Relaxationsphänomenen geworden waren. Jetzt sehen wir im $2D^{-11}B{}^{1}H{}^{-11}B{}^{1}H{}$ -Experiment, daß die drei gleich intensiven Signale wechselseitig Kreuzpeaks ergeben, und im 2D-11B-1H-hetcor-Experiment lassen sich auch die Signale der zugehörigen terminal gebundenen H-Atome erkennen und zuordnen, die im ¹H-NMR-Spektrum als breite Multipletts gerade noch erkennbar sind. Das ¹¹B-Singulett kleiner Intensität ergibt keinen Kreuzpeak. Der ¹H-NMR-Peak bei $\delta = -1.35$ spricht in den revidierten Spektren für fünf und nicht, wie früher angenommen für drei brückenständige H-Atome, die in der NMR-Zeitskala äquivalent sind. In Übereinstimmung mit NMR-Werten der Literatur^[15] liegt das arachno-Anion $B_9H_{14}^-$ vor, dessen Struktur (Punktgruppe C_{3v}) bei fünf flukturierenden Protonen die gemessenen NMR-Spektren erklärt. Die Bildung von B₉H₁₄⁻ aus B₅H₉ in Gegenwart protonenaufnehmender Basen ist bekannt^[15]. Die Rolle des Iminoborans 1 ist offenbar die, daß sich das aus B_5H_9 abspaltbare Proton an das N- und die Base L an das B-Atom von 1 addieren [Gl. (6)]. Ammoniobor(1 +)-Kationen dieses Typs mit dreifach koordiniertem Bor sind lange bekannt^[16]. Die früher von uns angenommene Struktur ist nicht richtig^[14].

$$RB \equiv NR \xrightarrow{+2 L}_{-L \cdot BH_3} \begin{bmatrix} R \\ B \equiv NHR \\ L \end{bmatrix} B_9 H_{14} \quad (6)$$

$$R = tBu; L = N$$

Pentaboran(9) reagiert mit dem Azadiboriridin 2 so, als werde es wie B_3H_7 u.a. in BH_3 und B_2H_4 zerlegt, da nur die Produkte 4 und 6 gefunden werden.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft unterstützt.

Experimenteller Teil

NMR: Varian VXR 300 [1 H: 299.95 MHz (5, 6), 11 B: 96.233 MHz (6, 7), 13 C: 75.429 MHz (6)] und Bruker WH 270 [11 B: 86.625 MHz (5), 13 C: 67.88 MHz (5)], in CDCl₃. – CHN-Analysen: Carlo-Erba-Elemental-Analyzer 1106.

tert-Butyl(tert-butylamino)chlorboran: Zu einer Lösung von 4.16 g (29.96 mmol) *tert*-Butyldichlorboran^[17] in 100 ml Pentan tropft man bei 0°C eine Lösung von 4.38 g (61.58 mmol) *tert*-Butylamin in 50 ml Pentan. Man rührt 2 h bei Raumtemp., filtriert und arbeitet das Filtrat destillativ auf. Bei 44°C/8 Torr gehen 3.84 g (73%)

Produkt als farblose Flüssigkeit über. – ¹H-NMR: $\delta = 0.82$, 1.22 (2 s, 1:1). – ¹¹B-NMR: $\delta = 40.8$. – ¹³C-NMR: $\delta = 21.6$ (s), 27.8 (q), 31.6 (q), 50.5 (s). – C₈H₁₉BClN (175.5): ber. C 54.75, H 10.91, N 7.98; gef. C 54.58, H 11.18, N 7.92.

tert-Butyl- μ -(tert-butylamino)-diboran(6) (5): Zu einer Lösung von Triboran, B3H7, in THF gelangt man in Anlehnung an eine bekannte Vorschrift^[18], indem man zu einer Suspension von 2.30 g (20.06 mmol) käuflichem Tetramethylammonium-triborat(8) in 20 ml THF bei 10°C in zwei Portionen 2.55 g (10.04 mmol) I₂ gibt, 30 min bei 10 °C und weitere 30 min bei 25 °C rührt und filtriert; im Filtrat bestimmt man den Gehalt an B₃H₇ durch Volumetrie des bei der Methanolyse freigesetzten Wasserstoffs (Ausb. an B₃H₇ 95%). Zu einer so bereiteten Lösung von 15.10 mmol B₃H₇ in 20 ml THF gibt man eine Lösung von 2.02 g (14.50 mmol) 1^[19] in 5 ml THF, rührt die Mischung 24 h und entfernt dann bei 15 Torr alle flüchtigen Reaktionsanteile. Aus dem Rückstand lassen sich bei 25°C/1-5 Torr 0.45 g (20%) 5 als farblose Flüssigkeit abkondensieren. – ¹H-NMR: $\delta = 0.69$ (2, 9H, tBu), 1.09 (s, 9H, tBu), 4.67 (breit, 1 H, NH); die breiten Multipletts der B-gebundenen H-Atome heben sich vom Untergrund kaum ab. - ¹¹B-NMR (-40° C): $\delta =$ 26.9 (t/d, J = 120/44 Hz), -12.9 (d, J = 125 Hz). - ¹³C-NMR: δ = 22.8 (breit, BC), 28.6 (q, Me), 28.9 (q, Me), 53.0 (s, NC). C₈H₂₃B₂N (154.9): ber. C 62.03, H 14.97, N 9.04; gef. C 61.58, H 15.04, N 9.74.

Dasselbe Produkt erhält man, wenn man zu 0.17 g (7.94 mmol) LiBH₄ in 10 ml THF bei -78 °C eine Lösung von 1.57 g (7.94 mmol) *tert*-Butyl(*tert*-butylamino)chlorboran in 5 ml THF tropft und noch 1 h bei Raumtemp. rührt. Nach Filtrieren lassen sich wie oben 0.74 g (60%) 5 gewinnen.

Hexa-tert-butyldiaza-arachno-octaboran(10) (6): Zu einer wie oben bereiteten Lösung von 4.10 mmol B₃H₇ in 25 ml THF gibt man 2.88 g (12.68 mmol) 2^[20]. Man rührt 60 h bei Raumtemp. In der Lösung läßt sich das Produkt 4 anhand seiner ¹¹B-NMR-Signale nachweisen^[4]. Nach Entfernen der leicht flüchtigen Bestandteile i. Vak. nimmt man in 20 ml Diethylether auf und filtriert. Aus dem Filtrat lassen sich 0.74 g (41%, bezogen auf B₃H₇) 6 als farbloser Feststoff, Schmp. 207 °C, kristallisieren. $- {}^{1}$ H-NMR: $\delta = 0.28$ (br, q, 2H, endo-H), 0.89 (br, q, J = 133 Hz, 2H, exo-H), 0.92, 1.11, 1.31 (3 s, je 18 H, tBu). $-^{11}$ B-NMR: $\delta = -34.8$ (d/d, J = 134/51Hz), 17.1 (s), 36.5 (s) (1:1:1); das Signal bei $\delta = -34.8$ gibt im 2D-¹¹B-¹H-NMR-hetcor-Versuch Kreuzpeaks mit ¹H-NMR-Signalen bei $\delta = 0.28, 0.89$ und im 2D-¹¹B-NMR-COSY-Versuch Kreuzpeaks mit den beiden anderen ¹¹B-NMR-Signalen. – ¹³C-NMR: $\delta = 20.9, 21.5 (2 \text{ s, br}), 30.7, 32.3, 32.5 (3 \text{ q}), 53.0 (\text{s}). - C_{24}H_{58}B_6N_2$ (439.6): ber. C 65.57, H 13.30, N 6.37; gef. C 65.09, H 13.27, N 6.53.

tert-Butyl(tert-butylamino)(2,6-dimethylpyridin)bor(1 +)-tetradecahydrononaborat(1-)(7): Zur Herstellung verfährt man, wie für die Darstellung des vermeintlichen Azaborans C₁₅H₃₆B₆N₂ beschrieben^{114]}. – Folgende NMR-Angaben sind zu berichtigen: ¹H-NMR: $\delta = -1.35$ (br, 5H statt 3H, μ -H). – ¹¹B-NMR: 4 Signale im Verhältnis 1:3:3:3 statt 1:2:2:1; $\delta = 24.3$ (d, J = 141 statt -141 Hz). – Zusätzliche NMR-Daten: Im 2D-¹¹B-¹H-NMR-hetcor-Versuch findet man folgende δ (¹¹B)/ δ (¹H)-Kreuzpeaks: -8.5/ 2.18, -1.65, -21.5/1.55, -1.65, -24.3/1.15; im ¹H-NMR-Spektrum verschwinden die breiten Signale der terminalen H-Atome bei $\delta =$ 2.18, 1.55, 1.15 im Untergrund; das hetcor-Signal bei $\delta = -1.65$ entspricht dem sehr breiten Signal $\delta = -1.35$ im ¹H-NMR-Spektrum (µ-H). Im 2D-¹¹B-NMR-COSY-Versuch ergeben sich Kreuzpeaks zwischen allen drei Dublett-Signalen. – Die Elementaranlyse konnten wir um den C-Wert ergänzen. – $C_{15}H_{42}B_{10}N_2$ (358.6): ber. C 50.24; gef. C 50.16.

Röntgenstrukturanalyse von 5: Kristalle von 5 wurden bei 238 K in einer Kapillare auf dem Diffraktometer mit Hilfe eines Miniatur-Zonenschmelzverfahrens mit fokussierter Infrarotstrahlung gezüchtet^[21]. R3-Nicolet-Vierkreisdiffraktometer (Mo- K_{α} -Strahlung, Graphitmonochromator). Meßtemperatur 117 K. Zelldaten: $a = 619.1(2), b = 895.9(3), c = 1120.8(4) \text{ pm}, \alpha = 105.07(3), \beta =$ 99.16(3), $\gamma = 107.66(3)^\circ$, $V = 0.5524(3) \text{ nm}^3$, $D_{\text{ber}} = 0.932 \text{ g cm}^{-3}$, Z = 2. Raumgruppe $P\overline{1}$ (Nr. 2). 1953 unabhängige Reflexe im Bereich $3 \leq 2\Theta \leq 50^{\circ}$, davon 1633 beobachtet $[F_{0} \geq 4\sigma(F)]$. Die Struktur wurde mit direkten Methoden gelöst (Programm SHELXTL-PLUS, Rechner Micro-VAX II). R = 0.0885, $R_w =$ 0.0952, $w^{-1} = \sigma^2(F_0) + 0.0008F_0^2$. Maximale Restelektronendichte 502 e nm⁻³. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Zusammenarbeit mbH, D-76344 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-400 117, der Autoren und des Zeitschriftenzitats angefordert werden.

- ^[1] P. Paetzold, Adv. Inorg. Chem. 1987, 31, 123-170.
- ^[2] P. Paetzold, B. Redenz-Stormanns, R. Boese, Angew. Chem. **1990**, 102, 910-911; Angew. Chem. Int. Ed. Engl. **1990**, 29, 900-902.
- ^[3] S. Küpper, U. Englert, P. Paetzold, *Heteroatom. Chem.* 1990, 1, 479-484.
- ^[4] P. Paetzold, B. Redenz-Stormanns, R. Boese, M. Bühl, P. von Ragué Schleyer, Angew. Chem. **1990**, 102, 1059-1060; Angew. Chem. Int. Ed. Engl. **1990**, 29, 1059-1060.
- ^[5] D. F. Gaines, R. Schaeffer, J. Am. Chem. Soc. 1964, 86, 1505-1507.
- ^[6] J. Dobson, R. Schaeffer, Inorg. Chem. 1964, 9, 2183-2184.
- ^[7] K.-K. Lau, A. B. Burg, R. A. Beaudet, *Inorg. Chem.* 1974, 13, 2787-2791.
- ^[8] E. A. Cohen, R. A. Beaudet, *Inorg. Chem.* 1973, 12, 1570-1573.
 ^[9] M. Yalpani, R. Köster, R. Boese, *Chem. Ber.* 1993, 126, 285-288.
- ^[10] G. Geisberger, G. Linti, H. Nöth, Chem. Ber. 1992, 125, 2691-2699.
- ^[11] R. DePoy, G. Kodama, Inorg. Chem. 1985, 24, 2871-2872
- ^[12] J. Müller, P. Paetzold, R. Boese, *Heteroatom Chem.* 1990, 1, 461-465.
- ^[13] D. C. Moody, R. Schaeffer, Inorg. Chem. 1976, 15, 233-236.
- ^[14] S. Küpper, P. Paetzold, Chem. Ber. 1989, 122, 479-480.
- ⁽¹⁵⁾ S. H. Lawrence, J. R. Werner, S. K. Boocock, M. A. Banks, P. C. Keller, S. G. Shore, *Inorg. Chem.* **1986**, 25, 367-372.
- ^[16] H. Nöth, P. Fritz, Z. Anorg. Allg. Chem. 1963, 322, 297-309.
- ^[17] P. A. McCusker, E. C. Ashby, H. S. Makowski, J. Am. Chem. Soc. **1957**, 79, 5182-5184.
- ^[18] B. Brellochs, Dissertation, Universität Stuttgart, 1985.
- ^[19] P. Paetzold, C. von Plotho, G. Schmid, R. Boese, B. Schrader, D. Bougeard, U. Pfeiffer, R. Gleiter, W. Schäfer, *Chem. Ber.* 1984, 117, 1089-1102.
- ^[20] R. Boese, B. Kröckert, P. Paetzold, Chem. Ber. 1987, 120, 1913-1915.
- ^[21] D. Brodalla, D. Mootz, R. Boese, W. Oßwald, J. Appl. Crystallogr. **1985**, 18, 316-319.

[117/93]